

Cluster project VITIFIT: Current results on copper reduction from vineyard and greenhouse trials

Way forward in organic plant health care strategies Online Conference – November 17, 2022

Ottmar Baus¹, Dr. Stefan Schwab² & Prof. Dr. Beate Berkelmann-Löhnertz¹

¹Hochschule Geisenheim University

²Erlangen-Nürnberg University

Gefördert durch

aufgrund eines Beschlusses des Deutschen Bundestages

www.hs-geisenheim.de

Efficacy of CuCaps against *Plasmopara viticola*

Ottmar Baus

17.11.2022 www.hs-geisenheim.de

Gefördert durch

Trial data

	8
applications	(24 May to 04 August 2022)
interval	10 days
inoculation date	23 May 2022
cultivar	Riesling
disease pressure	low
assessment dates	12 July 2022, 15 August 2022

Application gear

HOCHSCHULE GEISENHEIM UNIVERSITY

All applications with a pneumatic application gear (by Schachtner[©])

Disease severity on leaves – Assessment 02

Disease severity on bunches – Assessment 01

Disease severity on bunches – Assessment 02

CuCaps – microencapsulated copper salts for improved efficacy against grapevine downy mildew

Dr. Stefan Schwab

17.11.2022 www.fau.de

Gefördert durch

Basic structures of microcapsules

Core-shell capsule

Matrix capsule

Basic structures of microcapsules

Core-shell capsule

Matrix capsule

What are microcapsules made of?

Chemical composition of the CuCaps

- Matrix material
 - Hydrogenated vegetable oil

- Additives
 - Confidential

- Actives
 - Copper sulfate
 - (Copper phosphate)

Test rig for spray solutions

 Validation of the applicability of the spray solution

VITIFIT

FRIEDRICH-ALEXANDER UNIVERSITÄT

Particle size analysis

′|⊤|**FIT**

All particles are less than 150 μ m in size \Rightarrow CuCaps applicable in field sprayers

FRIEDRICH-ALEXANDI

Release kinetics of the CuCaps on potted vines

Conclusion

VITIFIT FAU FRIEdRIcht-Alexander UNIVERSITÄT ERLANGEN-NÜRNBERG

- CuCaps are matrix capsules produced by spray cooling
- CuCaps are mainly made of hydrogenated vegetable oils
- Copper sulfat and copper phosphate are the active ingredients
- CuCaps are water dispersible powders
- The particle size distribution allows the application in field sprayers
 - Recommendations: 50 mesh pressure filter, 25 mesh nozzle filter, (flat fan venturi nozzle)
 - Stirring the tank mix before application
- CuCaps release the active ingredients over time

Results of nonanal application against *Plasmopara viticola* on potted vines

Prof. Dr. Beate Berkelmann-Löhnertz

17.11.2022 www.hs-geisenheim.de

Gefördert durch

Role of nonanal in host finding

- Zoospores orient themselves towards the stomata on the basis of a nonanal gradient released via the stomata.
- External application of nonanal disturbed the gradient on the leaf surface so that zoospores could not find the stomata. This led to decreased infection rates on cv. Müller-Thurgau (Schröder 2010).

Figure: Syngenta Agro GmbH

PhD Thesis Stephan Schröder (2010):

Plant immunity as a result of co-evolution – using the pair grapevine / downy mildew as a model (KIT Karlsruhe)

Efficacy of nonanal against Plasmopara viticola on potted vines – Experiment 1

Data: B.Sc. Thesis Felix Leon Klaus, Geisenheim University

reduced downy mildew

Efficacy of nonanal against Plasmopara viticola on potted vines – Experiment 2

Data: B.Sc. Thesis Felix Leon Klaus, Geisenheim University

Lessons learnt:

- At higher infection level, the efficiency of nonanal decreases (67% vs. 47% disease severity).
- Even a higher nonanal concentration (4 g/L) could only reduce the infestation to

Zoospore release under nonanal exposure

Data: B.Sc. Thesis Felix Leon Klaus, Geisenheim University

Lesson learnt:

In addition to the alteration of the natural nonanal gradient by an external application of nonanal, there also appears to be a <u>direct</u> <u>effect</u> of the substance against *P. viticola*.

Next steps and Outlook – Nonanal

low copper concentration + Nonanal Matrix capsule with Nonanal alone

VITIFIT

Project funding

The project is supported by funds of the Federal Ministry of Food and Agriculture (BMEL) based on a decision of the parliament of the Federal Republic of Germany via the Federal Office for Agriculture and Food (BLE) under the Federal Programme for Ecological Farming.

Gefördert durch

Bundesministerium für Ernährung und Landwirtschaft

Thank you for your attention!

Ottmar Baus Dr. Stefan Schwab Prof. Dr. Beate Berkelmann-Löhnertz

Way forward in organic plant health care strategies | Online Conference | November 17, 2022

HOCHSCHULE GEISENHEIM UNIVERSITY

Gefördert durch

