Vorratsschutz für den Ökolandbau – Grundlagen

Dr. Cornel S. Adler

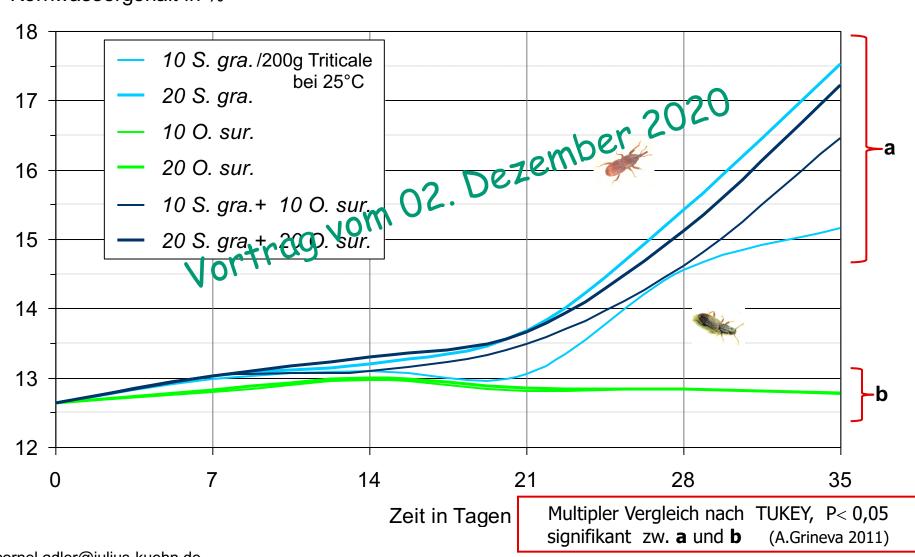
Julius Kühn-Institut
Institut für ökologische Chemie, Pflanzenanalytik und Vorratsschutz, Berlin

- Vorratsschädlinge
- Ansprüche an ein Vorratslager
- Schädlingsvermeidung, Früherkennung und Bekämpfung
- Schlussfolgerung

Vorratsschädlinge

Insekten

Käfer (ca. 60 Arten) Motten (ca. 15 Arten)


Staubläuse (ca. 10 Arten) Dezember 2 Vom 02. Fähigkeiten vorratsschädlicher Insekten:

- Orientierung nach Duftstoffen aus Vorratsgütern
- Reduzenten im Ökosystem
- Überleben und Vermehrung ohne zusätzliches Wasser

Änderung der Kornfeuchte durch Insekten

Kornwassergehalt in %

Integrierter Vorratsschutz im ökologischen Landbau

Schädlingsvermeidung

- geeignete Bauweise
- Rohwareninspektion
- Kühlung Trocknung
- Hygienemaßnahmen
- ■Verpackungsschutz

Schädlings-□ visuelle ezember 2020ekämpfung

- Inspektion
- Messung von
 - Temperatur
 - Feuchte

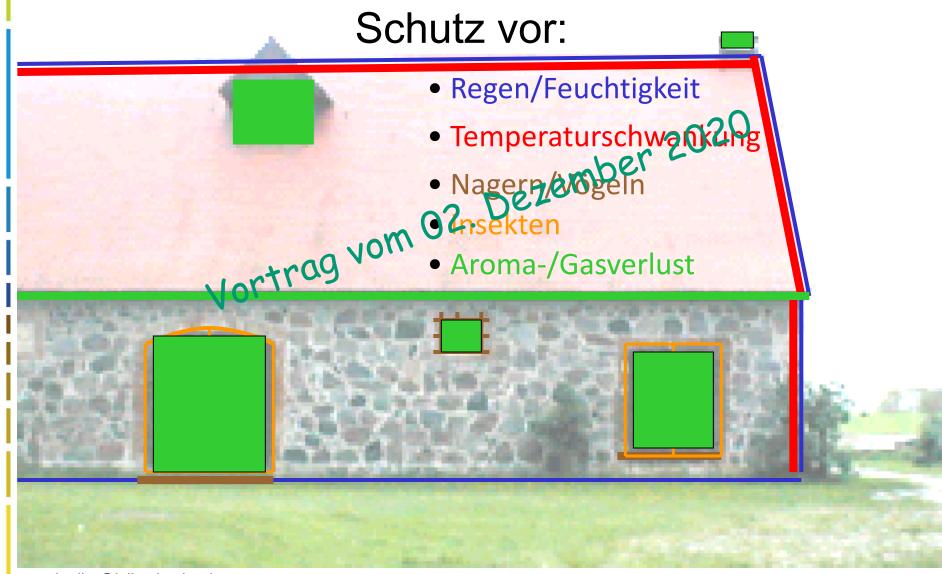
ortrag

- Produktdichtebestimmung
- **Bioakustik**
- **Fallen**

Hitze>50°C Kälte -20°C

Frühzeitig: Parasitoide Räuber

Kieselgur Pyrethrine


CO₂ (N_2)

Schädlings-

- physikalische Verfahren
- biologische Verfahren
- biotechnische Verfahren
- chemische Verfahren

(Adler 1998)

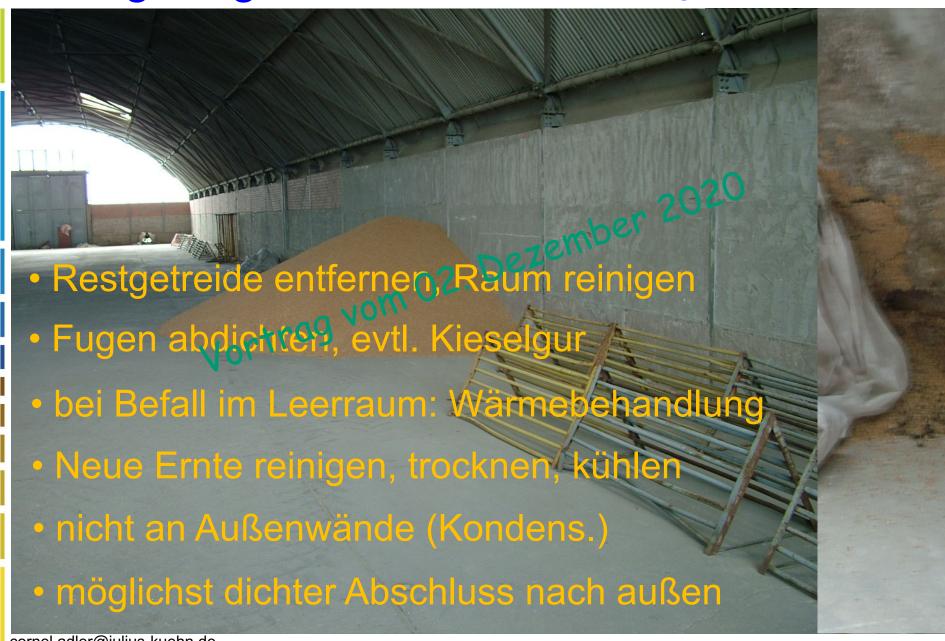
Anforderungen an ein Vorratslager

Insektenorientierung als Befallsursache

Wichtig in

Getreidelager

Lebensmittelindustrie


verpackten Lebensmitteln

Gradient attraktiver Duftstoffe

Erzeugerlager – die Herausforderung

Schädlingsvermeidung

∮jKi

- □ geeignete Bauweise
- Rohwareninspektion
- Kühlung Trocknung
- Hygienemaßnahmen
- Verpackungs schutz

Nach Fertigungsbereichen optimieren! - Bedeutung der Temperatur für die Schädlings-Entwicklung (nach Fields 1994)

> 55	Tod in Minuten
> 45	Tod in Stunden
> 35.7	Entwicklung stoppt
25-33	Max. Entwicklungsrate
< 25	Verlangsamte Entwicklung
< 13	Entwicklung stoppt
< 6	Bewegung stoppt, best. unadaptierte Tiere sterben
< -15	Adaptierte Tiere sterben
< -25	Tod in Minuten, gefrieren
	 > 45 > 35 e 1 25 - 33 < 25 < 13 < 6 < -15

Schädlingsvermeidung

- **□** geeignete Bauweise
- Rohwareninspektion
- Kühlung Trocknung
- Hygienemaßnahmen
- Verpackungsschutz

- Bedeutung der Feuchte am Beispiel Weizen

	Wassergehalt	sergehalt entsprechende 25chädlinge rel. Luftfeuchte			
	< 9 %	Dez30%	-		
	9-14.8m 02	30 – 70 %	Käfer, Motten		
	ort14-18 %	70 – 90 %	Käfer, Motten, Staubläuse, Milben		
			Pilze		
	> 18 %	> 90 %	Käfer, Motten, Staubläuse, Milben, Pilze, Bakterien		
ج			,		

Invasoren und Penetratoren

Die meisten Vorratsschädlingsarten sind Invasoren (z.B. Eilarven Dörrobstmotte, Fam. Pyralidae)

Verpackungsschutz

Schädlingsfrüherkennung

- visuelle Inspektion
- Messung von
 - Temperatur
 - Feuchte
 - CO₂-Gehalt
- Produktdichtebestimmung
- Bioakustik
- □ Fallen

Anzeichen für Befall?

Fraßmehl, Fraßschäden

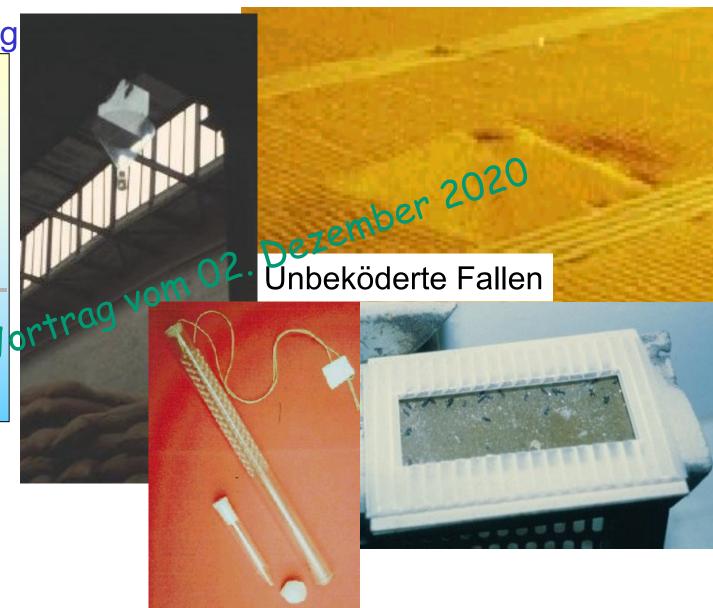
Kotpartikel, Verunreinigungen

• Gespinste (bes. Motter larven)

or*Löcher in Verpackung

- Larvenhäute, tote und lebende Insekten
- erhöhte Temperatur
- Feuchte, Schimmel
- muffiger Geruch

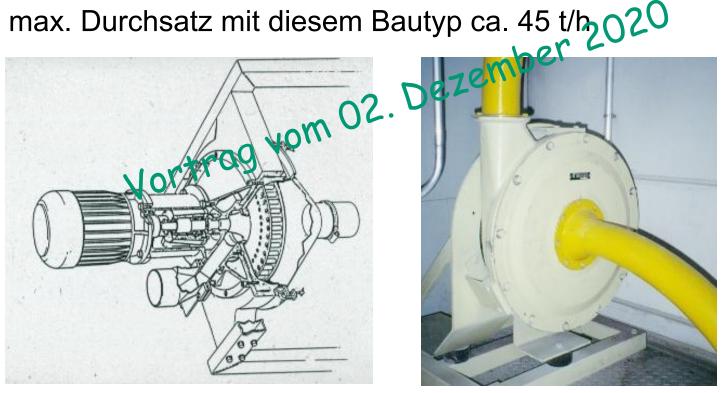
- □ visuelle Inspektion
- Messung von
- Produktdichte-
- □ Fallen



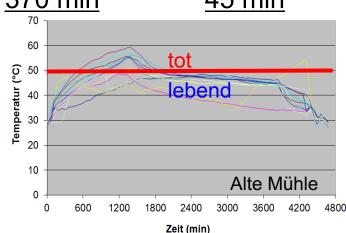
Schädlingsfrüherkennung

- visuelle Inspektion
- Messung von
 - Temperatur
 - Feuchte
 - CO₂-Gehalt
- □Produktdichtebestimmung
- □ Bioakustik
- Fallen

Pheromonfallen für Mottenmännchen


Trichterfallen

Prallmühlen


- Für Getreide, Griese, Mehle
- Teil des Mahlprozesses oder zur Schädlingsbekämpfung

Einwirkzeiten zur Abtötung verschiedener Arten mit Wärme

Tierart	45°C	50°C	55°C
E. kuehniella	660 min (11h)	<u>27 min</u>	7 min
S. granarius	<u>540 min</u> (9h)	40 min 20	30 min
S. zeamais	660 min (11h)	masmin	30 min
C. pusillus	1200 min (20h) De 10	65 min	20 min
T. castaneum	1890 min (30h)	35 min	20 min
R. dominica	540 min (9h) 660 min (11h) 1200 min (20h) 1890 min (30h) 6000 min (100h)	<u>370 min</u>	<u>45 min</u>
L. serricorne	2400 min (40h)	370 min	<u>45 min</u>
		60 to	t

Nützlinge gegen vorratsschädliche Motten

Trichogramma evanescens

Habrobracon hebetor

In D kommerziell verfügbar

Räuber: Xylocoris flavipes

Nützlinge gegen Käfer

Lariophagus distinguendus

Cephalonomia tarsalis

Foto: J. Lukas

Behandlung mit CO₂ unter Hochdruck

Schlussfolgerung

- 1. Vorratsschädlinge = Nahrungskonkurrenten Auftreten: Anzeichen f. mangelhaften Vorratsschutz
- 2. Vermeiden ist besser als Bekämpfen! hygienisch, trocken, kühl, kurz & insektendicht lagern
 - Duftstoffgradienten durch Umluft vermeiden
- 3. Früherkennung zur Schadensminimierung geeignete Fallen/Techniken nutzen!
 - z.B. Becherfallen, Pheromonfallen, Akustik
- 4. Bekämpfung möglichst früh und gezielt